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ABSTRACT Oil reheating has a significant impact on global health due to its extensive consumption,
especially in South Asia, and severe health risks. Nevertheless, food image analysis using multispectral
imaging systems(MISs) has not been applied to oil reheating analysis despite their vast application in rapid
food quality screening. To that end, the paper discusses the application of a low-cost MSI to estimate the
‘reheat cycle count classes’ (number of times an oil sample is recursively heated) and identify ‘critical
classes’ at which substantial changes in the oil sample have materialized. Firstly, the reheat cycle count
class is estimated with Bhattacharyya distance between the reheated and a pure oil sample as the input.
The classification was performed using a support vector machine classifier that resulted in an accuracy
of 83.34 % for reheat cycle count identification. Subsequently, an unsupervised clustering procedure was
introduced using a modified spectral clustering (SC) algorithm to distinguish critical classes under reheating.
In addition, laboratory experiments were performed to ascertain the ramifications of the reheating process
with a chemical analysis. The chemical analysis of the coconut oil samples used in the experiment coincided
with the chemical analysis results and was statistically significant (p < 0.05). Accordingly, the proposed
work closes the gap for using multispectral imaging for oil reheating and proposes a novel algorithm
for unsupervised detection of critical property changes in the oil. Hence, the proposed research work is
significant in its practical implications, contribution to food image analysis, and unsupervised classification
mechanisms.

INDEX TERMS Multispectral imaging, Oil reheating, Transmittance spectrum, Quality analysis, Support
vector machines, Spectral clustering

I. INTRODUCTION
The quality of food consumed plays a pivotal role in as-
suring the health of a society. Therefore, it is of paramount
importance to continuously monitor the quality of food.
Rapid screening of food and beverages, including edible oils,
has become a key focus among scientists and industrialists
because contamination and adulteration of food compromise
the quality of food [1]–[3]. In this context, the need for
accurate, fast, non-destructive, and economical methods to
assure the standard of food are of a timely need.

In recent years, numerous sensor-based techniques and
systems have been proposed and implemented to learn in-
dividual dietary and energy intake [4]–[6], identify unique
food items in meals [7], [8], and monitor food consumption
characteristics such as food microstructure [9]. Among the

sensor-based food assessment, techniques based on image
analysis are a prominent research avenue for rapid screening
of food and beverages. Red-Green-Blue (RGB) colour pho-
tography, spectroscopy, and spectral imaging (SI) could be
food image analyses. In RGB photography, recorded images
are reconstructed by mixing available ground-truths for the
three spectral regions in various proportions. This technique
has been used in a wide range of applications: detection of
skin defects in citrus fruits [10], development of sorting and
grading mechanisms [11], [12], and dietary assessment via
food image analysis with deep learning [13]. Although RGB
photography has its merits in food analyses, the technique has
spectral limitations when analyzing items responsive to UV-
region, such as oil and vinegar. Besides that, spectroscopy
and SI techniques are superior to RGB photography at sens-
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ing and differentiating such items as these methods include
signatures from outside the visible region. Besides that, spec-
troscopy and SI provide better feature discrimination power
with greater spectral bands than RGB photography.

In particular, spectroscopy methods are useful in deriv-
ing elaborative quality parameters [14]–[16] using spectral
characteristics. Especially, spectroscopy techniques such as
Fourier Transform Infra-Red (FTIR) [17], and Raman spec-
troscopy [18] are regularly used in the compositional analysis
of oil and agricultural produce [19]. Though both the above
spectroscopy techniques have disparate operating spectral
regions, both methods can derive the respective spectrum
of the specimen within minutes. Nonetheless, spectroscopy
techniques are contingent upon established reference spectra
similar to RGB photography for calibration and baseline
removal. Hence, without accurate references, the potential of
this method is severely hindered. Besides that, spectroscopy
equipment is complex, expensive, and restricted to a labora-
tory environment rather than for field use compared to regular
RGB images. Moreover, the method requires professional
knowledge and experience to operate the instrument and
analyze the measurements.

SI is a cost-effective alternative to spectroscopy meth-
ods which could be described as an extension of RGB
photography into near-infrared (NIR) and ultraviolet (UV)
regions [20]. Similar to spectroscopy, SI could be used to
analyze both solids [21] and liquids [22], as well as opaque
and translucent materials. SI could be categorized as hyper-
spectral imaging systems (HISs) and multispectral imaging
systems (MISs) depending on the spectral discriminating
power each system offers. Usually, HISs have more dis-
crete wavelengths with a narrow spectral resolution, and the
monochrome spectral images are acquired with a diffraction
mechanism. Whereas MISs only utilize a few selected wave-
lengths ranging from NIR to UV and use either optical filters
with ambient light or separate light sources for each spectral
band along with a monochrome camera for image acquisi-
tion. In the literature, hyperspectral imagery has been used to
extract information about bruises in peaches [23], and straw-
berries [24] with significant accuracies. Moreover, HISs have
been used to analyze skim and nonfat milk powder [25] and
to predict microbial spoilage of bakery products [26] which
demonstrate the applicability of HISs at various levels in the
food chain. Although HISs offer superior spectral features to
MISs, it demands complex systems to control and standardize
the image acquisition process. Additionally, it costs about
USD 8000 [27] to build a low-cost HIS when the average
GDP per capita in South Asian countries, where oil reheating
is a more prevalent issue [28], [29], is around USD 2000
[30]. It can be argued that the HIS is not suitable for on spot
testing instead of the proposed imaging setup considering
the cost and hardware complexity of a HIS compared to an
MIS. Besides that, MISs could be used as an on-spot primary
screening mechanism to separate aberrant samples, which
then can be analyzed extensively with HIS, spectroscopy or
chemical methods. Nevertheless, the development of an MIS

imposes an optimization problem for the band selection in
a cost-effective manner. Since MISs integrate both imaging
and spectroscopy techniques, MISs offer advantages such
as minimal sample preparation, non-destructive examination,
and fast-acquisition times over chemical analyses [31]–[33].
These practical advantages, along with the development of
computational imaging, have fomented exploring MISs as a
viable option for various applications in food image anal-
ysis [34]–[36] amongst researchers. Furthermore, MISs are
simpler and less expensive to build and could be used as a
portable device, as evidenced by the developed MIS in the
proposed work instead of HISs.

Reheating is another form of food preservation among
injecting chemicals to ripen, preserving perishable goods,
but done for cost mitigation. In particular, this practice is
commonplace in South Asian countries [28], [29], especially
at households and restaurants. Though reheating and reusing
oil has its financial incentive, such corruption is pernicious to
health. Consequently, the ramifications of oil reheating are
significant because the degree of harm from consumption
and the total population of consumers is high. Hence, it
is a clear requirement to flag if such appreciable change
has occurred and is detected in the oil. Besides that, there
are no rapid screening techniques to identify such changes
due to oil reheating, even though they happen vastly in fast
food chains. However, several assessment techniques were
proposed in the past few decades to estimate various quality
parameters of edible oils with MISs under different degrading
processes like adulteration and toxin formation during the
manufacturing stage. At the same time, only a limited amount
of work has been carried out to assess the effects of reheating
and reusing the oil. Since repetitive use of coconut oil is
expected in food-service establishments and households as
a measure to cut down the cost [37], coconut oil was used
to obtain experimental results in the proposed work. Though
reheating is a continuous process, the number of times oil
is reheated is a discrete variable. Therefore, contamination
due to reheating can happen at different levels and can have
significant alterations at different reheat cycles. Hence, it is
a clear requirement to flag if such appreciable change has
occurred and been detected. Since such demarcations can
be done for the same oil under different reheat cycles, the
change detection must be unsupervised. It is necessary to
treat this as a specific novel unsupervised research problem
in food image analysis. Moreover, the chemical and thermo-
physical properties are altered during reheat [38] and these
physicochemical changes compromise the safety of the oil,
thus potentially making fried foods unsafe for consumption
[39]. Many secondary oxidative products such as carbonyls,
organic acids, hydrocarbons, and polymerized compounds
are generated during repeated heating. Furthermore, the pro-
duction of trans-fatty acids raises low-density lipoprotein
(LDL) and total cholesterol while decreasing high-density
lipoprotein (HDL) cholesterol. Consequently, often use of
impure coconut oil leads to an increased risk of cardio-
vascular diseases [40], [41], carcinogenesis, and other non-
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communicable diseases [42]. Though it is patent that the
formation of secondary products is unhealthy, it is difficult to
determine the healthiness and unhealthiness of contaminated
samples; instead, food analyses are more concerned about the
relative change in the chemical composition of the sample;
specifically, the oxidative stability [43]–[46] since it involves
significant health risks.

This work discusses a novel application for MISs with
coconut oil as the case study. As articulated above, spectral
imaging has not been applied to study reheating in food qual-
ity analysis, let alone coconut oil. Hence, the application of
multispectral imaging to oil reheating is a novel contribution
to food image analysis. Then, the proposed work discusses
two analytical methods: reheat cycle count classification and
significant alteration detection. The former is similar to algo-
rithms proposed in adulteration for constructing a functional
relationship. However, this functional relationship is used for
classification for the class estimation problem, unlike in oil
adulteration studies. However, the latter proposes a novel
usage for oil contamination detection where the primary
agenda is to find at what point significant property change
occurs. We are proposing using unsupervised classification to
identify appreciable changes in spectral properties. Further,
we propose a novel mechanism to determine the number of
clusters with spectral clustering. The proposed application
estimates the reheat cycle count class (number of times a
given oil sample has been reheated) compared to a fresh batch
of the oil and can be used to recognize reheat cycle count
classes with significant chemical alterations to the oil during
the reheating process. For brevity, the reheat cycle count
classes where these dramatic changes in the composition oc-
cur will be referred to as ‘critical reheat cycle count classes’.
The method proposed in this work utilizes the transmittance
of light through the specimen to produce a transmittance
spectrum of the oil sample. Then, the algorithm developed
to estimate the reheat cycle count classes first incorporates
Fisher Discriminant Analysis (FDA) for dimension reduc-
tion. These selected features were used to calculate Bhat-
tacharyya distance, which the Support Vector Machine used
to estimate the reheat cycle count. Next, spectral clustering
was used to build an algorithm to distinguish the reheat cycle
count classes with significant spectral property changes. The
outcome of the grouping is the formation of umbrella clusters
of reheat cycle count classes with incremental changes in
spectral properties due to reheating. As for reheating causes
changes in chemical properties, cluster boundaries could
perhaps imply critical changes in composition, indicating
health risks.

The proposed work contributes to multispectral imaging
under the food image analysis research, and we are proposing
two analytical methods for oil reheating. Firstly, to determine
the reheat level count class and secondly to detect significant
chemical property changes of the oil. Since the reheat level
count class determination is a classification task, we have
compared different classifiers using Bhattacharyya distance
as the input feature. Finding a suitable classifier under the

proposed feature selection method is one of the technical
contributions of this work. Secondly, we proposed a novel
mechanism to detect marked changes in the oil, in particular
oxidative stability of the oil. For that, we are proposing a
novel mechanism to determine the number of clusters using
spectral clustering to select the optimal number of clusters.
Furthermore, we compared the algorithm results with the
chemical analysis because multispectral imaging has not
been applied in analyzing property changes. The contribu-
tions of the work can be listed as follows: (a) An in-house
developed portable transmittance-based MIS. (b) A rapid and
cost-effective screening algorithm for reheated coconut oil.
(c) A methodology that estimates the number of times the oil
has been reheated. (d) The proposed methodology can iden-
tify the reheat cycle counts at which a notable change in the
oil has happened via monitoring spectral properties indicative
of significant chemical and thermophysical property changes.

The paper is organized as follows. First, a summary of
related works in MISs in food image analysis is included
in section II. Followingly, specifications of the MIS, ex-
perimental procedure, image pre-processing, and algorithm
development are expounded in section III. Lastly, the results
of the developed algorithms and the chemical analysis for the
proposed application are available in section IV along with
the evaluation in section V.

II. RELATED WORK
Multispectral imaging systems have been used in applica-
tions from various fields such as agriculture [47], microbi-
ology [16], entomology [48], etc. In specific, adulteration
and defects of agricultural produce have been analyzed using
MIS for turmeric [49], fruits [50]–[52], beef [53], and rice
[54], as well as in packed foods [55], and tomato paste [56].
Besides that, different imaging systems have been proposed
in the literature with applications. For example, the growth of
mould on food has been examined [57] using the Videome-
terLab spectral imaging instrument with 18 spectral bands.
Also, an MIS operating in the spectral range of 405–970 nm
consisting of 19 different spectral bands has been used to
determine the aerobic plate count of cooked pork sausages
[58]. In addition, SI has been used for crop monitoring, and
vegetation index calculation [59] and to assess the health
status of crops [60]. In [61], an MIS has been developed
to detect oil-containing dressing on salad leaves to assess
the energy intake. Furthermore, SI has been used to analyze
coconut oil adulteration with palm oil [62], mustard oil [63].
The work proposed in [64] presents the determination of
turbidity in coconut oil with food image analysis.

In most work found in the literature for studies on edible
oil, the prime focus has been natural degradation, adulter-
ation, and defect identification. However, processes such as
oil reheating and associated changes have not been under
scrutiny with SI as much compared to other debasing pro-
cesses: oil adulteration and toxin formation, even though the
chemical changes from reheating are equally deleterious. In
particular, oil adulteration is the most extensively studied
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contamination method in the food research community using
chemical analyses [65]–[67] and spectroscopy methods [17],
[68]–[71]. However, the application of spectral imaging to
study oil adulteration has been limited, let alone coconut
oil, even though spectral imaging has been used to detect
adulterants in consumables such as wheat flour in turmeric
[49], limestone powder in tapioca starch [72], horsemeat in
beef [73], sucrose in tomato paste [56].

In [62], [74] for oil adulteration studies, the focus has been
on developing a functional relationship since the requirement
is to calculate the growth of a parameter. However, in the
adulteration analysis using MSIs, the change detection in
chemical properties has not been studied as opposed to the
proposed work for reheating analysis. Unlike the adulteration
or reheat cycle count class estimation, which uses supervised
learning, the discrimination of appreciable chemical property
changes has been performed with unsupervised learning.
Then, toxin formation detection in oil has been studied in
[75], [76] using mass spectrometry and FTIR spectroscopy,
respectively. Though multispectral imagery has not been
applied in toxin formation in oil so far to the best of our

knowledge, considering the parallelity of spectroscopy and
spectral imaging, it should be possible to develop an algo-
rithm to detect the presence aflatoxin in oil.

III. MATERIALS AND METHODS
A. DEVELOPMENT OF THE MULTISPECTRAL IMAGING
SYSTEM
Most MISs found in the literature have been designed to
derive the reflectance spectrum of the specimen, often of
opaque and solid materials. However, this configuration is
futile with translucent liquids such as oils and vinegar be-
cause only a fraction of light is reflected while most light is
transmitted through the sample. To that end, the MIS devel-
oped for this application was configured as depicted in Fig.
1a to measure the transmittance spectrum of liquids which is
an adaptation of the reflectance-based setup proposed in [77],
[78]. The optical excitation for the sample is generated using
a dedicated illumination panel comprised of narrow-band
LEDs corresponding to nine spectral bands from 375 nm to
1000 nm with specifications as given in Table 1, accompanied
by an illumination panel made of Aluminum with a 130 mm
inner diameter to provide better illumination for the

(a) (b)

FIGURE 1. (a) Schematic diagram and (b) design (obscure edges and radii are depicted in dashed lines and dotted lines, respectively) of the in-house developed
transmittance based MIS

TABLE 1. Specifications of the LED panel of the MIS

LED Number Typical peak wavelength (nm) Typical emitting spectral band (nm) Typical half power bandwidth (nm)

1 405 375 – 435 20
2 430 375 – 475 20
3 500 450 – 550 30
4 610 520 – 620 10
5 660 630 – 685 20
6 740 670 – 770 20
7 850 770 – 900 30
8 890 830 – 970 40
9 950 900 – 1000 50
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specimen. The LED driver ICs (MAX16839ASA+) of the
illumination panel was powered by an in-house developed
AC regulated 12 V DC power supply and the LEDs were
controlled using a separate switching circuit.

The camera used for the study is a 10-bit CMOS
monochrome camera (FLIR Blackfly S Mono, 1.3 MP, USB3
Vision camera, Resolution – 1280 × 1024) with a similar
bandwidth as the illumination panel. A dark chamber was
utilized to mount the camera and illumination panel, as well
as to hold the liquid sample and to preclude ambient light
interference on the sample and the camera. The dark chamber
was fabricated using plywood with dimensions 40 × 30 ×
35 cm3 to affix the LED panel and place the specimen. Also,
the design for the dark chamber is given in Fig. 1b. The
camera was mounted at the apex of the chamber to acquire
the transmittance spectrum of the sample, and the cost of
construction for the proposed imaging setup was USD 650,
which is less than that of a low-cost HIS. A mini PC (Intel®

NUC) was used to store images and to send commands to
both the Discovery™ board (STM32F0DISCOVERY) and
the camera. The liquid sample was contained in an opaque
cylindrical container with a 10 cm diameter made of PVC and
a 2 mm plain glass was affixed to the base of the hollow pipe.
The monochrome camera and LED switching circuit were
synchronized using a Windows batch script before capturing
the images.

B. PREPARATION OF SAMPLES
Authentic, freshly expelled coconut oil was obtained from
a reputed large-scale coconut oil producer and exporter.
Potatoes were obtained from the local market, washed thor-
oughly with water to remove soil, peeled off, and sliced into
pieces with a commercial slicer to obtain a uniform thickness
of 0.5 cm, and then the slices were cut using a circular
cutter to obtain a uniform diameter of 4.5 cm. The potato
slices were blanched at an average temperature of 80 ◦C
for 1 min, blotted with a paper towel (Flora 2-ply kitchen
paper towel), packed in zip-lock freezer bags (thickness:
2 mil, water vapour permeability: 177 g/ m2/ 24 h) and stored
at -80 ◦C in food storage refrigerators until further analysis.
All the potato samples were processed and stored the day
before the initial day of the experiment and used within
five days. A batch of potato chips was defrosted for each
day of the experiment, and the drip was blotted out before
the experiment. On the first day, 1 L of coconut oil was
heated to 150 ◦C and the temperature was maintained in
the range of 150± 5◦C for 10 min by adjusting the flame
of the burner. Potato slices (100 g) were fried in open pans
for 3 min at 150± 5◦C. At the time of the introduction of
fresh potato slices into the fryer, it was made sure not to
allow the temperature to drop below 140 ◦C. The fried potato
slices were removed from the fryer and left to drain for
5 min under ambient temperature conditions. After allowing
oil samples to attain the ambient temperature, an image of
repeatedly heated and reused coconut oil was acquired using
the multispectral image (MSI) acquisition system. The oil

was stored in edible oil cans at ambient temperatures for use
on the following day, and the complete process was repeated
for five consecutive days. Each day, the number of times an
oil sample has been heated was incremented by one, which
created a separate reheat cycle count class. The day-to-day
reheating done at the consumer level was emulated by the
repetitive heating cycles in sample preparation.

C. IMAGE PRE-PROCESSING

It is necessary to treat the images to mitigate the noise
effects and artefacts superimposed on the captures [79] due
to various noise. Hence, the primary correction on the images
was to remove any biases added by the camera’s sensor.
The images were corrected using a dark current reduction
step preparatory to further image improvements. In the dark
current reduction step, first, an image is captured with zero-
illumination in a dark environment (usually known as dark
frames / dark current images), and then this dark frame is
subtracted from the corresponding actual raw MSIs [80]. The
dark frames were captured at the beginning of each MSI
acquisition process in the implementation. After that, the
dark current subtraction process was applied to subsequent
MSIs utilizing the 1,

P [λ] = S[λ]−D (1)

where, P [λ] is the dark current removed image at wavelength
λ, S[λ] is the raw image at wavelength λ and D is the
dark current image. However, it is impossible to perform the
spectral image normalization using white-references, which
is the standard practice for reflectance-based MSIs [79] for
transmittance-based due to physical constraints. Even though
the white-reference normalization in the reflectance configu-
ration can increase the resolution of the pixel values through
the scaling operation, it is ineffective in the transmittance
configuration as more light is passed through the specimen,
thus yielding normalized values closer to unity.

Next, the nonlinear median filtering process was carried
out on the dark current subtracted images to remove the
aforementioned random noise from the images. Here the
median filter was utilized to remove some inherent noise
by removing the isolated pixels while preserving the spatial
resolution [81]. The input pixel value is replaced by the
moving average filter output given by,

P ∗[i, j] =
1

N

i+w∑
k=i−w

j+w∑
l=j−w

P [k, l] (2)

where, P ∗[i, j] is the replaced value of the pixel (i, j), P [k, l]
is the pixel value of the dark current subtracted image at (k, l)
location, w is a suitable window size, andN is the number of
pixels in the window. A window size of 30×30 is chosen for
the implementation of 2 in the application.

D. ALGORITHMS ON REHEATED OIL ANALYSIS
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FIGURE 2. Conversion sequence from spectral features to the statistical feature

1) Dataset
For the experiment, nine independent trials were conducted
where the oil sample was reheated six times during each trial.
In each trial, an MSI was acquired at the end of reheating
for each reheating instance. After pre-processing the image,
a 30× 30 window was cropped, which results in 900 spectral
signatures for the respective reheat cycle count class under
the respective trial, and when accounted for the nine trials,
8100 spectral signatures were recorded for each reheat cycle
count class. Since there were six classes, a dataset with a
size of 48600 spectral signatures were recorded and made
available for public access [82]. This dataset was used for
both studies, nonetheless, with the reformation of the dataset
as appropriately.

For the first study in III-D2, labelled sets are required to
train the classifier with the reheat cycle count as the class la-
bel. According to related work on using multispectral images
to detect oil-containing salad dressing [61], a sample size
of 44.6 is sufficient for each class to produce a statistically
significant result according to [83]. Hence, sixty labelled sets
were prepared from the 8100 spectral signatures recorded for
each reheat cycle count class. Consequently, each labelled
set included 135 spectral signatures once the 8100 signatures
of each reheat cycle count class were divided amongst the
sixty sets, and the reformed dataset consisted of a total of
360 labelled sets. Next, a training-testing split of 80:20 was
used on the sixty labelled sets from each reheat cycle count
class.

For the second study in III-D3, the proposed method
identifies significant property changes in the same oil sample
as the reheat cycle count is increased through unsupervised
classification of the multispectral images. Since the image
data from different trails should not be mixed and the learning
technique is unsupervised, the labelled sets used for the first
study can not be used here. Instead, the original dataset

was separated according to their respective trial to create
nine subsets of data, and each subset included the spectral
signatures for all six reheat cycle count classes of that trial.
Accordingly, each subset, therefore, constituted a total of
5400 spectral signatures.

2) Reheat cycle count estimation

The first objective of the study was to estimate the number
of times a given coconut oil sample has been reheated as
compared to a pure sample. Since the estimated quantity
is a discrete variable, the estimation problem can be con-
verted to a classification problem. To construct the classifier,
first, the dimension of the training dataset was reduced with
FDA. Even though the classifier could be trained to output
the estimated reheat cycle count of each pixel — with the
reduced spectral signature at each pixel considered as the
input — and then attempt to interpret the reheat cycle count
class of the image in a post-analysis, it is more pertinent to
determine the reheat cycle count of the entire oil sample at
once with the input image for the classifier. For that, the input
to the classifier has to be constructed by concatenating the
individual spectral signatures of each sample. However, this
circumscribes the selection of an appropriate sample size of
choice. To that end, the classifier was developed to use the
statistics of the sample rather than raw signatures, and the use
of statistics relieves the constraints on the sample size and the
requirement of a post-analysis of a pixel-level classification.

Here, a separate pure oil sample was used as the refer-
ence sample to compute Bhattacharyya distance, and each
reheated oil sample was a target sample. Bhattacharyya dis-
tance (DB) is a measure of the similarity between two distri-
butions and can be calculated according to 5 for multivariate
normal distributions,
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DB1
=

1

8
(µt − µr)

>
(

Σt + Σr

2

)−1
(µt − µr) (3)

DB2
=

1

2
log

(
det
(

Σt+Σr

2

)
√
detΣt detΣr

)
(4)

DB = DB1
+DB2

(5)

with µt, Σt as the mean signature and the covariance matrix
of the target oil sample, and µr, Σr as the mean signature and
the covariance matrix of the reference oil sample. Then DB1

and DB2
represent the Mahalanobis distance and variance

disparity between the two distributions. With the calculation
of Bhattacharyya distance (DB), the spectral features of the
oil samples will be converted to a statistical feature and
this uni-dimensional feature is used for the classification of
reheat count classes. The conversion sequence from spectral
features to the statistical feature is summarized in Fig. 2.

For the classification of the sample, a Support Vector
Machine (SVM) [84], [85] classifier was used to find the
optimal decision thresholds with Bhattacharyya distance.
The resulting linear decision boundaries from the use of a
single input espoused the use of an SVM classifier, as the
SVM classifier is superior at finding the best hyperplanes
which maximally separate different classes (see Appendix
A). An SVM classifier with the radial basis function as the
kernel was constructed using five-fold cross-validation. The
parameter γ and the cost were chosen through a parametric
sweep (see Appendix B) for the optimal combination of the
two parameters. The SVM model was evaluated for all data
points using the accuracy of the classification, and since the
dataset used for training was balanced, the accuracy was
defined as in 6 as below,

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

with the terms true-positive (TP), true-negative (TN), false-
positive (FP), and false-negative (FN).

3) Discrimination of appreciable alterations
The number of reheating cycles of an oil sample is a discrete
realization of an underlying continuous process, vis-à-vis,
changes in chemical properties. Even though the control
parameters (temperature and duration) were maintained uni-
form throughout different trials, frying of different potato
batches could change the chemical properties of the oil grad-
ually or abruptly at consecutive reheats. Therefore, identify-
ing any sudden change in oil properties is an indicator of sig-
nificant damage to the oil with a step increment in the reheat
cycle count. However, the development of the discriminator
falls within the realms of unsupervised learning because the
developed framework has to be applicable in the case of other
fryable foods. Since the framework’s objective is to realize
reheat cycle count classes where a noticeable change has
occurred in the oil, the problem could be transformed into
an unsupervised clustering problem, wherein only gradual

changes have had happened with the number of reheat cycle
counts in each cluster. However, to group these reheat cy-
cle count classes, it is imperative to determine the optimal
number of clusters considering the global structure of the
spectral signatures prior to clustering. To that end, spectral
clustering (SC) [86] is an apposite clustering algorithm that
facilitates the consideration of the global structure of the
dataset and the search for the optimal number of clusters in
the dataset. SC uses the spectral connectivity of the dataset to
group data; hence the connectivity amongst data points has
to be improved for optimal grouping. Sigma-sweep [87] was
performed to augment the spectral connectivity, according to
7 as below,

W[i, j] =

{
exp(− ||xi−xj ||2

2σ2 ) ; i 6= j

0 ; otherwise
(7)

D[i, k] =

{∑
j W[i, j] ; i = k

0 ; otherwise
(8)

L = I−D−
1/2 W D−

1/2, (9)

where, W is the affinity matrix, D is the degree matrix,
L is the Graph Laplacian and I is the identity matrix. A
Gaussian kernel was used to compute the affinity matrix, with
xi and xj denoting the ith and jth signatures of the set of
spectral signatures for the oil sample and σ as the radius of
neighbourhood. Then, Y[m,n] denotes the matrix element at
the mth row and nth column of the matrix Y.

In the sigma-sweep, the tuning parameter (σ) was in-
creased from 1.0 since the requirement was to group different
reheat cycle count classes rather than detecting sub-clusters
within a class. This grouping method will lump classes
with marginal changes in spectral properties together while
separating reheat cycle count class clusters with significant
changes. Accordingly, the outcome of the grouping is the
formation of umbrella clusters of classes with incremental
changes in spectral properties — which reflects the chemical
characteristics of the oil — due to reheating. Hence, the inter-
class boundaries demarcate significant or perhaps critical
changes in composition and are worthy of identification
because of the health risks. Then, to determine the optimal
number of clusters, the eigengaps were considered between
the third and sixth eigengap, where eigengap is the difference
between consecutive eigenvalues of L in the ascending order.

Two selection algorithms were used to select the optimal
number of clusters, considering the variation of the sigma-
sweep curves.

1) Largest gap value (LGV): the eigengap with the highest
gap value was considered as the prominent mode. The
connectivity of the spectral signatures is at its summit
for the resulting prominent mode.

2) Largest bandwidth (LBW): the eigengap with the
largest σ span for which the gap values are higher
than half the maximum gap value for that mode was
considered as the prominent mode. The connectivity of
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(a)

(b)

FIGURE 3. Prominent mode selection under (a) largest gap value and (b) largest bandwidth algorithms (sigma-sweep curve of the prominent mode is thickened)

the spectral signatures is more stable in the prominent
mode than the structures resulting from the rest of the
modes.

Once the prominent mode is selected, the σ value for
which the highest gap value was recorded for the prominent
mode was selected as the dominant σ under each selection
algorithm. The dominant σ improves the spectral connec-
tivity, and the prominent mode gives the optimal number of
clusters. In Fig. 3, the curve characteristics corresponding to
the two selection algorithms are demonstrated. Once these
two parameters (prominent mode and dominant σ) are com-
puted, the reheat cycle count classes are clustered using SC
to distinguish the classes that have had a marked change in
the spectral properties from one reheat cycle count class to
the next.

IV. RESULTS

A. MULTISPECTRAL IMAGERY VS. RGB PHOTOGRAPHY

The premise for the application of image analysis is that the
changes in the oil properties are observable by the spectral
properties of the oil sample. For illustration, the true-colour
image under RGB photography is given in Fig. 4a of the
same oil batch for different reheat cycle count classes. The
false RGB representation of the MSIs of the same oil batch
is provided in Fig. 4b to demonstrate the differentiation
capability of the MIS, as the raft of dimensions of MSIs are
cumbersome to be showcased. Also, the mean Bhattacharyya
distance to each reheat cycle count class from the pure oil
class is given under each class for both the imaging tech-
niques.

B. CLASSIFIER DECISION BOUNDARIES AND
PERFORMANCE

The SVM classifier was developed with the Bhattacharyya
distance between an oil sample and the pure sample (refer-
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(a)

(b)

FIGURE 4. (a) True RGB images and (b) false RGB representation of MSIs of
reheated oils

ence sample) as the input variable. The variation of Bhat-
tacharyya distances computed for different reheat cycle count
classes are given Fig. 5a, and the corresponding decision
boundaries of the SVM classifier are depicted in Fig. 5b.
The classification results for the reheat cycle count class
estimation for train and test data are presented in the form
of confusion matrices in Fig. 6, respectively. The box plots
given in Fig. 5b are mostly contained within the decision
boundaries from the SVM classifier, which is propitious
for higher classification accuracies as corroborated by the
confusion matrices in Fig. 6, whose non-zero elements are
primarily on either the main or the closest diagonal.

C. SIGMA-SWEEP AND REHEAT CYCLE COUNT
CLASSES CLUSTERING
In this section, the operation of the SC framework to dis-
tinguish noticeable changes in the oil as the reheat cycle
count class is waxed exemplified for several trials. In Fig.
7, the variation of the eigengaps with σ as introduced in
section III-D3 are plotted. Then, the corresponding clustering
configurations are presented in Fig. 8. Separately, the change
in thiobarbituric acid reactive substances (TBARS) and total
oxidation (TOTOX) were measured from a chemical analysis
for the trials to check the results from the SC framework.
The measured TBARS and TOTOX for the overall trials and
two randomly selected trials (trial 0 and trial 5) out of the
nine independent trials are given in Table 3 as percentages ac-
cording to [88]. In the incremental percentage values (given
in parentheses in Table 3), a 20% and 200% increase in
TBARS and TOTOX values respectively were observed with
p < 0.05 implying a statistically significant result. Table 4
presents the reheat cycle count classes with an appreciable
change in the respective property (spectral, TBARS, and
TOTOX).

V. DISCUSSION
This work proposed a novel application for MISs and their
employment in food quality analysis. There is a conspicuous
variance amongst the spectral properties of different reheat
cycle count classes according to the false RGB representa-
tion given in Fig. 4b which promotes the use of MSIs to
detect and estimate the effects of reheating. Besides that,
the insignificant differences between the RGB images of
different reheat cycle count classes in Fig. 4a corroborate the
applicability of transmittance MSIs over RGB photography
with translucent specimens. Also, the mean Bhattacharyya
distances in adjacent reheat cycle count classes in Fig. 4a for
RGB photography are marginally separable compared to the
values obtained with MSIs as provided in Fig. 4b. In addition,
the monotonic variation in Bhattacharyya distances observed
for MSIs has not been replicated with RGB photographs.
Furthermore, the variation observed in spectral properties
with the reheat cycle count class has reemerged in Fig. 5a.
This result first validates the use of the particular statistical
measure in estimating the number of reheating cycles but
essentially intimates the usage of the Bhattacharyya distance
in estimating the underlying chemical process.

The mean Bhattacharyya distance recorded for each reheat
cycle count class monotonically increased (Fig. 5a) with
the reheat cycle count class, and this monotonic variation
allowed to define decision boundaries that gradually increase
as observed in Fig. 5b. Nonetheless, there were overlapping
distance intervals in Fig. 5a which indicates the existence of
coinciding spectral properties of adjacent reheat cycle count
classes. As established previously, these characteristics of
spectral properties are reflections of the chemical properties
of the oil, and the resulted overlapping intervals implicate
the divergent nature in the oil chemistry and the similarity in
chemical properties of adjacent reheat cycle count classes.

Further, using a statistical measure has inadvertently al-
lowed the classifier to use the sample properties in estimating
the reheat cycle count class analogous to a chemical analysis.
Whereas, had the classifier been trained on spectral proper-
ties of individual pixels, the estimations of the pixels of a
sample will inherit the distribution observed in the signatures.
Therefore, the distribution of the classification results has to
be considered to estimate the reheat cycle count class of the
sample, which is antithetical to the use of individual spectral
properties over sample properties. In addition, the application
of a statistical measure offers flexibility in selecting a prefer-
able sample size from the MSIs of a given oil sample. More-
over, the use of a statistical measure could be construed as
observing a superpixel that inherits the spectral properties of
that sample. Hence, the proposed method could even be used
with low image resolutions because low-resolution images
will record the cumulative effect — similar to using a sta-
tistical measure — of spectral signatures under observations.
Besides, high-resolution images inherently perform superior
as these images could contain more delicate information of
the spectral properties.

The decision boundaries given in Fig. 5b have distinctly
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(a) (b)

FIGURE 5. (a) Variation of Bhattacharyya distances with reheat cycle count classes with the variation of the average Gaussian distribution along the first
eigenvector and (b) decision boundaries of the SVM classifier for class estimation

(a) (b)

FIGURE 6. Classification accuracy of reheat cycle count classes estimation for (a)train and (b)test data

separated the pure oil samples from heated oil, indicating
the spectral properties are drastically changed. Also, this
distinction has been recorded in confusion matrices for both
train and test data with a classification accuracy of 100%.
Overall, the SVM classifier has recorded an overall accuracy
of 86.84% and 83.34% for train and test data. Since the
classifier can differentiate pure oil from heated oil, it is apt to
reconsider the classifier’s performance with heated oil only.
With only heated oil samples, the classifier can estimate the
reheat cycle count class with accuracy levels of 84.21% and
80.00% for train and test data, respectively.

The SC framework was introduced to detect the reheat
cycle count classes where a marked change in the spectral
properties happened. In both illustrated sigma-sweep curves

in Fig. 7a and 7b, the dominant clustering mode has been
recorded as four under the LGV algorithm. However, the
corresponding clustering configuration of the two trials is
disparate according to Fig. 8a and 8b. According to Fig. 8a,
the framework has chosen the first, second, and fourth reheat
cycle count classes as the stages where a drastic alteration has
occurred in the oil sample in trial 0. When compared with
the chemical results in Table 3 for trial 0, a similar pattern
is noticeable for the TOTOX level, whereas, with TBARS
value, a suitable separation would be the first, and fourth
as the critical reheat cycle count classes. In fact, in Fig. 7a,
the maximum gap value of the third and fourth eigengap is
similar, and the prominent mode of 4 has been chosen with
a slight margin. Furthermore, the SC framework has chosen
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(a)

(b)

(c)

(d)

(e)

(f)

Legend for sigma-sweep curves

FIGURE 7. Mode selection under LGV algorithm for (a) trial 0, (b) trial 5, and (c) overall trials and under LBW algorithm for (d) trial 0, (e) trial 5, and (f) overall trials
with sigma-sweep curves (prominent mode curve is thickened)

first, second, and fifth as the reheat cycle count classes of
interest for trial 5, and the separation could be observed
in both the TBARS and TOTOX values from the chemical
analysis. However, similar to trial 0, the optimal separation
could be redressed to three prominent clusters with the first
and fifth cycles as critical.

The variation in sigma-sweep curves, for both the trials as
σ is extremely increased, complements the above correction
for the prominent mode, as the value of the third eigengap
supersedes that of the fourth eigengap. Besides that, the
commonality in both these cases is that the eigengap (mode)
that sustained the gap value over an extensive range of σ is the
same and is three as presented in Fig. 7d and 7e. The cluster-
ing results with the LBW algorithm are presented in Fig. 8d
and 8e. When the LGV algorithm and the LBW algorithm are

juxtaposed, each method has its merits and demerits. For ex-
ample, the LGV algorithm tends to overestimate the number
of critical reheat stages but guarantees the maximal closeness
of the spectral properties of the reheat stages that are grouped.
Whereas the LBW algorithm is more robust in operation and
is immune to noise in spectral properties, yet could underesti-
mate the number of critical stages as the algorithm seeks for
maximally and equally separated clusters. Further, both the
LGV and LBW methods grouped reheat cycle count classes
with slight alterations in spectral properties while dividing at
reheat cycle count classes with significant changes. Thereby,
the inter-class boundaries represented appreciable changes in
composition, which indicates significant chemical property
changes that could be a potential health risk.

The performance of the LGV algorithm on an ensemble
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(a) (b) (c)

(d) (e) (f)

Legend for reheat cycle count classes

FIGURE 8. Clustering results of reheat cycle count classes under LGV algorithm for (a) trial 0, (b) trial 5, and (c) overall trials and under LBW algorithm for (d) trial
0, (e) trial 5, and (f) overall trials

of reheated oils are illustrated in Fig. 7c and Fig. 8c along
with the chemical analysis results in Table 3. The promi-
nent clustering mode given by the framework is four since
the fourth eigengap is the largest. However, the clustering
configuration of the mixture of an oil sample is inconsistent
with the results of the chemical analysis even though the
individual trials complied with the framework results. This
inconsistency could have been influenced by the spectral
similarity of adjacent reheat cycle count classes of different
trials. Hence, the SC framework has recognized the first,
second, and fifth reheat cycle count class as critical, while
the chemical analysis ruled first and fourth cycles and first
and fifth cycles as critical for TOTOX and TBARS values,
respectively. Nonetheless, the LBW algorithm has managed
to replicate the results (Fig. 7f and Fig. 8f) for TBARS
values of the mixture and this agreement of results powerfully
portrays the association between the spectral properties and
TBARS values. Despite the hodgepodge of spectral signa-
tures from different trials, the framework has managed to
group signatures from the same reheat cycle count class and
minimize misclassifications.

In this paper, the experimental procedure mimics edible
oils for frying in foodservice establishments. The proposed
application could be used to estimate the reheat cycle count
class of coconut oil and to visualize the harm to the chem-
ical properties of the oil as the reheat cycle count class is
increased. The food authorities could use the application to
check the use of reheated oil at food establishments. Also,

the vendors could use the MIS as visual assistance for safe
reheating and detect significant changes to the oil, which
could cause the oil to be deemed unfit for consumption.

VI. CONCLUSION
In this paper, a novel application was proposed for MISs
to estimate reheat cycle count class and discrimination of
appreciable alterations in the chemical and thermophysical
properties under repetitive heating for frying oil, with co-
conut oil as the case study. The proposed work introduced
the transmittance configuration of the MIS to acquire images
of translucent liquid specimens instead of the conventional
reflectance configuration. It was observed that the reheating
of oil is another oil degradation process like adulteration, and
MSIs prevail over RGB images in the detection of these cor-
ruptions. The spectral properties were proven to be sensitive
to the reheat cycle count class of the oil with the incorpo-
ration of Bhattacharyya distance. The SVM classifier had
an accuracy of 80.00 %, 83.34 %, and 100 % for estimating
reheat cycle count classes excluding pure oil, including pure
oil, and separation of pure oil and heated oil, respectively,
for test data. Furthermore, a novel algorithm was discussed
to select the prominent mode and dominant σ for the SC
framework suggested for detecting critical reheat cycle count
classes using spectral properties. The proposed LBW algo-
rithm identified clusters of reheat cycle count classes that
are dramatically separated in terms of spectral properties due
to the significant changes in the chemical properties. The
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TABLE 3. Percentage increase in TBARS and TOTOX levels at each reheat cycle count class with reference to the pure oil properties. Incremental change at
consecutive cycles are given within bracket. Significant changes p < 0.05 are in bold typeface and underlined.

Chemical
Property

Reheat cycle count class

1 2 3 4 5

O
ve

ra
ll

tr
ia

ls

TBARS 78.5 ± 35 86.0 ± 35 99.5 ± 40 117.5 ± 40 142.0 ± 40
(+ 78.5) (+ 7.5) (+ 13.5) (+ 18.0) (+ 24.5)

TOTOX 240 ± 40 395 ± 50 530 ± 80 820 ± 50 925 ± 105
(+ 240) (+ 155) (+ 135) (+ 290) (+ 105)

Tr
ia

l0

TBARS 105.5 114.5 122 161.5 161.5
(+ 105.5) (+ 9.0) (+ 7.5) (+ 39.5) (+ 0)

TOTOX 250 455 625 1005 1140
(+ 250) (+ 205) (+ 170) (+ 380) (+ 135)

Tr
ia

l5

TBARS 38.5 58.0 63.0 69.0 108.5
(+ 38.5) (+ 19.5) (+ 5.0) (+ 6.0) (+ 39.5)

TOTOX 250 445 530 615 845
(+ 250) (+ 195) (+ 85) (+ 85) (+ 230)

TABLE 4. Critical reheat cycle count classes for the trials according to the results from the SC framework and chemical analysis

Method Sample
Trial 0 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8

SC
framework

LGV 1, 2, 4 1, 2, 5 1, 4, 5 1, 3, 4 1, 5 1, 2, 5 1, 3, 5 1, 4, 5 1, 3
LBW 1, 4 1, 5 1, 5 1, 4 1, 5 1, 5 1, 3 1, 4 1, 3

Chemical
Analysis

TBARS 1, 4 1, 5 1, 5 1, 4 1, 5 1, 5 1, 3 1, 4 1, 3
TOTOX 1, 2, 4 1, 2, 5 1, 5 1, 4 1, 5 1, 5 1, 3 1, 4, 5 1, 3

identification was performed using a modified version of SC
to group reheat cycle count classes that were only marginally
separated. The modified version resulted in the formation
of umbrella clusters where the separation was significant
in the feature space. The cluster formation was shown to
be in line with the results of the chemical validation per-
formed subsequently. At the same time, the LGV algorithm
promoted the connectivity of intra-class spectral signatures
in each umbrella cluster more than the separation between
those umbrella clusters. Hence, while the LGV algorithm
managed to reproduce the results from the LBW algorithm,
it was able to identify ‘reheat cycle count classes’ with minor
alterations as well. Furthermore, it was evident that for proper
operation of the framework, it is necessary to analyze dif-
ferent oil samples separately, similar to alternative analytical
techniques, and should not be amalgamated. The chemical
analysis yielded that the TBARS and TOTOX values of oil
significantly changed with the reheat cycle count classes, and
the results of the SC framework were deemed to coincide
with the formerly mentioned chemical property alterations.
Food authorities and foodservice establishments could use

the proposed application for adherence to health and safety
protocol regarding safe reheating of oil. However, the case
study used in this work was limited to coconut oil and
potato chips as fryable food. Hence, we wish to expand the
proposed application and frameworks to other oil types such
as palm and soybean and other fryable food types. Also, the
MIS could be extended to measure the change in TBARS
and TOTOX values as there was an appreciable variation (p
< 0.05) in TBARS and TOTOX readings as the reheat cycle
count class was incremented.

.

APPENDIX A

The reheat count class classification accuracies of SVM
classifier were compared with different classifiers: Neural
networks, Nearest neighbor classifier, Nearest centroid clas-
sifier, Gaussian process classifier, and Random Forrest. The
comparison results are given in Table A1.

14 VOLUME x, 20xx



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144841, IEEE Access

Ranasinghe et al.: Transmittance multispectral imaging for reheated coconut oil differentiation

TABLE A1. Classification accuracy for reheat count class classification with different classifiers

Reheat count
class

Classifier
Support Vector

Machine
Neural networks Nearest Neighbor

Classifier
Nearest Centroid

Classifier
Gaussian Process

Classifier
Random Forrest

0 1.000 1.000 1.000 1.000 1.000 1.000
1 0.909 - 0.886 1.000 1.000 0.800
2 0.682 1.000 0.486 0.514 0.457 0.600
3 0.864 - 0.486 0.800 0.714 0.429
4 0.727 - 0.314 0.600 0.229 0.257
5 0.818 1.000 0.029 - - 0.057

overall 0.8334 0.5000 0.5335 0.6524 0.5664 0.5238

APPENDIX B
The classification accuracy from the parametric sweep are
given in Table B1 for the selection of optimal γ and cost.
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